THE COHOMOLOGY OF THE COMPLEX PROJECTIVE STIEFEL MANIFOLD

BY CARLOS ALFREDO RUIZ(1)

0. Let U_n be the unitary group of order n. We have inclusions

$$\cdots \supset U_n \supset U_{n-1} \supset \cdots U_1 \approx S^1.$$

We denote by $W_{n,n-m}$ the complex Stiefel manifold $W_{n,n-m} = U_n/U_m$ and by $Y'_{n,n-m}$ the complex projective Stiefel manifold which we defined as follows: S^1 , regarded as the set of complex numbers of module 1, acts by multiplication on U_n . This action being compatible with the above inclusions defines an action of S^1 on $W_{n,n-m}$ and we define $Y'_{n,n-m}$ as the set of orbits.

In particular we have

$$W_{n,1} = U_n/U_{n-1} \approx S^{2n-1},$$
 $W_{n,n} = U_n,$ $Y'_{n,n} = PU_n,$ the projective unitary group.

In this paper we compute $(H^*Y'_{n,k})$. Baum and Browder [1] have obtained our result in the special case $n=p^r$, m=0.

In order to state our main result we need some notation: Let ω be the generator of $H^*(CP^{\infty}) = \mathbb{Z}[\omega]$ and z_i the generators of $H^*(W_{n,k}) = \bigwedge (z_{m+1}, \ldots, z_n)$. Let $b_i = G.C.D.((C_{n,m+1}, \ldots, C_{n,i}))$. Finally in §1, we will show there is a fibration

$$W_{n,n-m} \xrightarrow{j} Y_{n,n-m} \xrightarrow{\pi} CP^{\infty}$$

with $Y_{n,n-m}$ of the same homotopy type as $Y'_{n,n-m}$. Then our main theorem is

THEOREM A.

$$H^*(Y_{n,n-m}) = \mathbb{Z}[y]/I \otimes \bigwedge (v_{m+2}, \ldots, v_n), \text{ where } \pi^*\omega = y;$$

 $i^*v_i = (b_{i-1}/b_i)z_i$ and I is the ideal generated by b_iy^i , $i = m+1, \ldots, n$.

In §1 we compute $H^*(Y_{n,k}; \mathbb{Z}_p)$ and $H^*(Y_{n,k}; \mathbb{Q})$ following the Gitler and Handel proof for real case [3]. In §2 we determine Ker π^* and Im i^* . In §3 we show that this information is enough to determine all relevant Bockstein homomorphisms

Received by the editors June 13, 1969.

⁽¹⁾ Supported by Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina.

and compute the Bockstein spectral sequence for every prime p. This determines completely $H^*(Y_{n,k})$.

We wish to thank Professors M. Mahowald and S. Gitler for their helpful suggestions and comments.

1. First we construct a space $Y_{n,k}$ of the same homotopy type as $Y'_{n,k}$. Observe that we have a principal bundle $S^1 \to W_{n,n-m} \to Y'_{n,n-m}$. Let ξ be the associate line bundle.

PROPOSITION 1. $n\xi = \xi \oplus \xi \oplus \cdots \oplus \xi$ has n-m C-linearly independent sections and it is the universal bundle for bundles $n\zeta$ having n-m C-linearly independent sections, where ζ is a line bundle.

Proof. The proof is similar to the real case given in [3]. The inclusion $U_m \subset U_n$ gives rise to a fibration of classifying spaces

$$(A) W_{n,n-m} \xrightarrow{i_1} BU_m \xrightarrow{\pi_1} BU_n$$

and the transgression satisfies

(1)
$$\tau z_i = \sigma_i$$
 where σ_i is the universal Chern class.

Now let γ be the canonical line bundle over \mathbb{CP}^{∞} and let f_n be the classifying map of $n\gamma$ and let

$$(B) W_{n,n-m} \xrightarrow{i} Y_{n,n-m} \xrightarrow{\sigma} CP^{\infty}$$

be the fibration induced from (A) by f_n .

It is easy to see that the bundle induced by $f_n\pi$ is a universal bundle for the *n*-plane bundles satisfying the conditions of Proposition 1. Thus we have

PROPOSITION 2. $Y_{n,n-m}$ and $Y'_{n,n-m}$ have the same homotopy type.

From (1) and naturality of Chern classes and transgression

$$\tau z_i = C_{n,i}\omega^i.$$

If $x \in H^*(E)$ we denote by \bar{x} (resp. \tilde{x}) its image in $H^*(E; \mathbb{Z}_p)$ (resp. $H^*(E; \mathbb{Q})$). Let N(p) be the smallest i such that $m+1 \le i < n$ and $C_{n,i}$ is not zero, mod p. The following theorem is similar to [3, Theorem 1.6].

THEOREM 3.

$$H^*(Y_{n,n-m}; \mathbf{Z}_p) = \mathbf{Z}_p[\bar{y}]/[y^{N(p)}] \otimes \bigwedge (\bar{x}_{m+1} \cdots \bar{x}_{N(p)}^{\hat{\gamma}} \cdots \bar{x}_n),$$

$$H^*(Y_{n,n-m}; \mathbf{Q}) = \mathbf{Q}[y]/[y^{m+1}] \otimes \bigwedge (\tilde{x}_{m+2} \cdots \tilde{x}_n),$$

where p is a prime and Q is the set of rational numbers; $i^*(\bar{x}_i) = \bar{z}_i$; $\pi^*(\bar{\omega}) = \bar{y}$; and $i^*(\tilde{x}_i) = \tilde{z}_i$, $\pi^*(\bar{\omega}) = \tilde{y}$.

Proof. Let K be a field, $K = \mathbb{Z}_p$ or $K = \mathbb{Q}$ and let N be the smallest i such that $m+1 \le i < n$ and $C_{n,i}$ is not zero in K.

In the spectral sequence of (B) with coefficients K we have

$$E_2 = K[\omega] \otimes \bigwedge (z_{m+1} \cdots z_n).$$

By (2) $d_{\tau}z_i = 0$, r < 2i, $d_{2i}z_i = \tau z_i = C_{n,i}\omega^i$, then $d_{\tau} = 0$, r < 2N and then $E_2 = E_{2N}$; but

$$d_{2N}z_N = C_{n,N}\omega^N \neq 0,$$

thus, z_N does not survive in E_{2N+1} and the image of the ideal $[\omega^N]$ in E_{2N+1} is 0. Moreover, E_{2N+1} is still a tensor product:

$$E_{2N+1}^{*,0} \otimes E_{2N+1}^{0,*} = E_{2N+1}^{*,*}$$

Now the following transgressions are zero (thus all the following differentials are zero), hence

$$E_{\infty} = E_{2N+1} = K[\omega]/[\omega^N] \otimes \bigwedge (z_{m+1} \cdots \hat{z}_N \cdots z_n).$$

The theorem now follows from Borel [2].

COROLLARY 4. $H^*(Y_{n,n-m})$ has p-torsion if and only if p divides $C_{n,m+1}$.

2. In this section we obtain the first results about $H^*(Y_{n,k})$. The key is Proposition 5 below on Ker π^* . In Corollary 7 we pick some elements in $H^*(Y_{n,k})$ and using them we choose new generators for $H^*(Y_{n,k}; \mathbb{Z}_p)$ and $H^*(Y_{n,k}; \mathbb{Q})$ ((7), (7')).

Proposition 5.

Ker
$$\pi^* = [b_{m+1}\omega^{m+1}; \dots, b_n\omega^n].$$

COROLLARY 6.

Ker
$$\bar{\pi}^* = [b_{m+1}\omega^{m+2}; \ldots, b_n\omega^{n+1}].$$

Let $c_i = b_{i-1}/b_i$, i = m+2, ..., n.

COROLLARY 7.

$$T^{2m+1}/\text{Im } i^* = \mathbb{Z}, \qquad T^q/\text{Im } i^* = 0, \qquad q \ge 2n,$$

$$T^{2i-1}/\text{Im } i^* = \mathbb{Z}_{c_i}, \qquad m+2 \le i \le n.$$

Thus, there exist elements v_i in $H^*(Y_{n,n-m})$ such that $i^*v_i = c_i z_i$, $m+2 \le i \le n$.

Before we give the proof we recall some facts about transgression in the spectral sequence of a fibration.

We use the transgression in (B) as defined in the following diagram, $\tau = j^* \circ (\bar{\pi}^*)^{-1} \circ \delta$

$$H^*(Y_{n,n-m}) \xrightarrow{i^*} H^*(W_{n,n-m}) \xrightarrow{\delta} H^*(Y_{n,n-m}, W_{n,n-m}) \xrightarrow{} H^*(Y_{n,n-m})$$

$$\uparrow \pi^* \qquad \qquad \uparrow \pi^*$$

$$H^*(CP^{\infty}, *) \xrightarrow{j^*} H^*(CP^{\infty}).$$

We recall that in the spectral sequence of (B) $E_2^{0.2i-1} \approx H^{2i-1}(W_{n,n-m})$. This isomorphism carries the subgroup $E_{2i}^{0.2i-1}$ onto T^{2i-1} , the subgroup of transgressive elements. Also $E_2^{2i.0} \approx H^{2i}(CP^{\infty})$ and this isomorphism induces the isomorphism of quotient groups $E_{2i}^{2i.0} \approx H^{2i}(CP^{\infty})/\mathrm{Ker}^{2i} \bar{\pi}^*$. Moreover, via these isomorphisms, τ corresponds to $d_{2i}^{0.2i-1}$ and

(3)
$$\operatorname{Im} d_{2i}^{0,2i-1} \approx \operatorname{Ker}^{2i} \pi^*/\operatorname{Ker}^{2i} \bar{\pi}^* \subset H^{2i}(CP^{\infty})/\operatorname{Ker}^{2i} \bar{\pi}^*.$$

Finally, τ induces an isomorphism

(4)
$$T^{q-1}/\operatorname{Im} i^* \approx \operatorname{Ker}^q \pi^*/\operatorname{Ker}^q \bar{\pi}^*.$$

Consider the diagram:

$$(C) \qquad H^*(W_{n,n-m}) \xleftarrow{i^*} H^*(Y_{n,n-m}) \xleftarrow{\pi^*} H^*(CP^{\infty})$$

$$\downarrow \theta \qquad \qquad \downarrow \theta \qquad \qquad \downarrow \theta$$

$$H^*(W_{n,n-m}; A) \xleftarrow{i^*} H^*(Y_{n,n-m}; A) \xleftarrow{\pi^*} H^*(CP^{\infty}; A).$$

If $A = \mathbb{Z}_p$, then Theorem 2 and $i^* \circ \pi^* = 0$ yield

(5)
$$\operatorname{Ker} i_{\mathbf{Z}_n}^* = [\bar{y}],$$

(6)
$$\operatorname{Ker} \pi_{\mathbf{Z}_0}^* = [\omega^{N(p)}].$$

If $A = \mathbf{Q}$, we have

(5')
$$\operatorname{Ker} i_{\mathbf{Q}}^* = [\tilde{y}],$$

(6')
$$\operatorname{Ker} \pi_{\mathbf{0}}^* = [\tilde{\omega}^{m+1}].$$

Proof of Proposition 5. The spectral sequence of (B) is trivial through E_{2m+2} . Thus $E_{2m+2}^{2m+2.0} \approx H^{2m+2}(CP^{\infty})$ and $\operatorname{Ker}^q \bar{\pi}^* = 0$, $q \leq 2m+2$.

From (2) and (3) we obtain

$$\operatorname{Ker}^q \pi^* = 0$$
, $q < 2m+2$ and $\operatorname{Ker}^{2m+2} \pi^* = [C_{n,m+1}\omega^{m+1}]^{2m+2}$.

Applying (2) repeatedly we have

$$[b_{m+1}\omega^{m+1},\ldots,b_n\omega^n] \subset \operatorname{Ker} \pi^* \subset H^*(CP^\infty).$$

For the other inclusion, put $b_i = ap^r$, where p does not divide a. We use diagram (C) with $A = \mathbb{Z}_p r$, if $p^s c \omega^t$ belongs to Ker π^* , s < r and c divides a, then $p^s c \theta(\omega)^t$ belongs to Ker $\pi^*_{\mathbb{Z}_p r}$ but it is not 0 because c is not a divisor of 0 in $\mathbb{Z}_p r$. On the other hand in the spectral sequence of (B) with coefficients $\mathbb{Z}_p r$

$$\tau z_k = C_{n,k} \omega^k = 0, \qquad k < i,$$

because p^r divides $C_{n,k}$ for those k. Thus, the spectral sequence is trivial through 2i and then $\text{Ker}^{2i} \pi_{\mathbf{Z}_{n,r}}^* = 0$.

Proof of Corollary 6. Follows from (3) and Proposition 5.

Proof of Corollary 7. First part follows from (4), second part follows trivially from first part.

The elements v_i are not unique, we will choose a fixed set of such elements arbitrarily.

In diagram (C) with $\mathbb{Z}_p = A$, we have:

- (i) if p does not divide c_i , $\theta v_i = c_i \bar{x}_i + u_i$, $m + 2 \le i \le n$ where $u_i \in \text{Ker } i_{\mathbf{z}_n}^*$;
- (ii) if p does divide c_i , then $\theta v_i \in \text{Ker } i_{\mathbf{z}_p}^*$.

Let I be $I = \{i; p \text{ does not divide } c_i, m+2 \le i \le n\}$. Let $J = \{j; j \notin I, m+1 \le j \le n\}$. Then $I = \{i; b_i \text{ is divided by the same power of } p \text{ as } b_{i-1}\}$.

The important situation occurs when i belongs to J. For example, m+1 and N(p) are the smallest and the greatest elements of J.

We will change the generators of $H^*(Y_{n,n-m}; \mathbb{Z}_p)$ to the following

$$c_i x_i = \theta v_i,$$
 $i \in I,$ $x_i = \bar{x}_i,$ $i \in J, i \neq N(p);$

then we obtain:

$$H^*(Y_{n,n-m}; \mathbf{Z}_p) = \mathbf{Z}_p[\bar{y}]/[\bar{y}^{N(p)}] \otimes \bigwedge (x_{m+1}, \ldots, \hat{x}_{N(p)}, \ldots, x_n)$$

where

(7)
$$\theta v_i = c_i x_i$$
, $i \in I$; $i_{\mathbf{Z}_p}^* x_i = \bar{z}_i$, $m+1 \le i \le n$, $i \ne N(p)$ and $\pi_{\mathbf{Z}_p}^*(\bar{\omega}) = \bar{y}$.

Again in diagram (C), this time with $A = \mathbf{Q}$, we have

$$\theta v_i = c_i \tilde{x}_i + \tilde{u}_i, \quad \tilde{u}_i \text{ belongs to Ker } i_0^*, \quad m+2 \leq i \leq n.$$

We define $c_i w_i = \theta v_i$, $m+2 \le i \le n$ and we obtain

(7')
$$H^*(Y_{n,n-m}; \mathbf{Q}) = \mathbf{Q}[\tilde{y}]/[\tilde{y}^{m+1}] \otimes \bigwedge (w_{m+2}, \dots, w_n)$$
where $\theta v_i = c_i w_i, \quad i_{\mathbf{Q}}^* w_i = \tilde{z}_i, \quad \pi_{\mathbf{Q}}^*(\tilde{\omega}) = \tilde{y},$

3. Next, we compute the Bockstein spectral sequence of the couple

$$H^*(Y_{n,n-m}) \xrightarrow{(\cdot p)^*} H^*(Y_{n,n-m})$$

$$\delta \qquad \qquad \theta$$

$$H^*(Y_{n,n-m}; \mathbf{Z}_p)$$

It follows from (7) that

$$E_1 = H^*(Y_{n,n-m}; \mathbb{Z}_p) = \mathbb{Z}_p[y]/[y^N] \otimes \bigwedge (x_{m+1} \cdots \hat{x}_{N(p)} \cdots x_n)$$

and from (7') that

$$E_{\infty} = H^*(Y_{n,n-m})/\text{Torsion} \otimes \mathbb{Z}_p = \mathbb{Z}_p[y]/[y^{m+1}] \otimes \bigwedge (w_{m+2}, \dots, w_n).$$

Recall that the differentials are Bockstein homomorphisms β_{τ} and an element $x \in E_1$, belongs to Im θ if and only if

(8)
$$\beta_r x = 0$$
 for all r .

An element $y \in H^*(Y_{n,n-m})$ has torsion p^r , that is $p^r a y = 0$ where p does not divide a, if and only if $\theta y \notin \text{Im } \beta_j$ for j < r, but

(9)
$$\theta v \in \operatorname{Im} \beta_r.$$

First we will give some easy results:

If $x \in E_r$, call $\phi(x)$ its image in E_{∞} , then

(10)
$$\phi(\bar{y}) = \tilde{y}; \quad \phi(x_i) = w_i, \quad i \in I.$$

By (7) and (8)

(11)
$$\beta_r(\bar{y}) = 0, \quad \beta_r(x_i) = 0, \quad \text{all } r, i \in I.$$

By (10), since $w_i \neq 0$,

(12)
$$x_i \notin \operatorname{Im} \beta_r$$
, all $r, i \in I$.

We arrange J so that $m+1=i(0)< i(1)< \cdots < i(j)< \cdots < i(t)=N(p)$ and put $b_{i(j)}=p^{r(j)}a_j$, where p does not divide a_j ; then r(j)>r(j+1) and $b_i=p^{r(j)}a_i$, $i(j) \le i < i(j+1)$.

By (9) and Proposition 5:

(13)
$$y^i \notin \operatorname{Im} \beta_r$$
, $r < r(j)$, $y^i \in \operatorname{Im} \beta_{r(j)}$, $i(j) \leq i < i(j+1)$.

Trivially

(14)
$$E_1^q = E_\infty^q, \quad q < 2i(0) - 1.$$

Now, we will compute β_r :

LEMMA 8. The following formulae hold for every j

$$\beta_r x_{i(j)} = 0, \qquad r < r(j),$$

(16)
$$\beta_{r(i)}x_{i(j)} = k_i y^{i(j)}, \quad k_i \in \mathbf{z}_p, k_i \neq 0,$$

(17)
$$E_1^q = E_{r(j)}^q, \qquad q < 2i(j+1)-1.$$

Proof. By (13) there is an element x such that $\beta_{r(0)}x = y^{t(0)}$ but x can only be a scalar multiple of $x_{t(0)}$ then (15) and (16) hold for j = 0.

By the same argument (15) and (16) hold for j=h provided that (17) holds for j=h-1.

In turn, (15) for every $j \le h$ and (11) together imply (17) for j=h because Bockstein homomorphisms are derivations.

COROLLARY 9. For every j

(18)
$$\beta_{r(j)}(x_{i(j)}y^s) = k_i y^{i(j)+s} \neq 0, \quad 0 \leq s < i(j+1)-i(j),$$

(19)
$$\beta_{r(j)}(x_{i(j)}y^{i(j+1)-i(j)}) = 0.$$

Proof. (18) follows from (16) and (17). (19) follows from (16).

We call $u_{i(j+1)}$ the image of $x_{i(j)}y^{i(j+1)-i(j)}$ in $E_{r(j)+1}$.

It remains to prove that $\beta_r=0$ unless r=r(j) for some j. This is part of the following lemma.

LEMMA 10. $\beta_r = 0$ unless r = r(j) and $E_{\infty} = E_r(o)$.

We use induction. Assign \tilde{y} to \bar{y} and w_i to x_i for $i \in I$, i < i(1).

By (15),..., (19) and dim $E_{\infty} \leq E_{r(0)}$, this correspondence determines an isomorphism from E_{∞} onto $E_{r(0)}$, up to degree 2i(1)-2.

Moreover, $\beta_r = 0$ up to degree 2i(1) - 2 unless r = r(0).

Suppose we have elements $\bar{u}_{i(j)}$, j = 1, ..., h, such that:

- (i) gr $\bar{u}_{i(j)} = 2i(j) 1$.
- (ii) $\bar{u}_{i(j)}x_i = -x_i\bar{u}_{i(j)}; \ \bar{u}_{i(j)}u_{i(j')} = -\bar{u}_{i(j')}\bar{u}_{i(j)}, \ j' < j; \ (\bar{u}_{i(j)})^2 = 0.$
- (iii) If we assign \tilde{y} to \bar{y} ; w_i to x_i for $i \in I$, i < i(j+1) and $w_{i(j)}$ to $\bar{u}_{i(j)}$ we determine an isomorphism from E_{∞} onto $E_{r(0)}$ up to degree 2i(h+1)-2.

Suppose besides that $\beta_r = 0$ up to degree 2i(h+1)-2 unless $r = r(j), j = 0, \ldots, t-1$. From these assumptions and (15), ..., (19) we have dim $E^q_{r(0)} = \dim E^q_{\infty}$, $q \le 2i(h+1)-1$ and all differentials are determined on all elements of degree $\le 2i(h+1)-1$ except $u_i(h+1)$ belonging to $E_{r(h)+1}$ and its images in E_r , r > r(h)+1.

Thus, for every r, $\beta_r u_{i(h+1)}$ must lie in the subspace of E_r spanned by $\{\beta_r a\}$, where a ranges over products. That means $\beta_r u_i(h+1)=0$ for r < r(h-1); and there is an element u' in $E_{r(h-1)}^{2i(h+1)-1}$, such that $\beta_{r(h-1)}u'=0$ and u' does not belong to the subalgebra generated by elements with degree < 2i(h+1)-1. It is easy to see that u' satisfies (ii). Again, $\beta_r u'=0$ for r < r(h-2) and we repeat the argument until we reach $E_{r(0)}$, then we obtain an element $\overline{u}_{i(h+1)}$ in $E_{r(0)}$ to which we may assign $w_{i(h+1)}$. Now we assign w_i to x_i for $i \in I$, i < i(h+2) and obtain an isomorphism up to degree 2i(h+2)-1. Then we have finished the proof of (i), (iii) with j=h+1. From (11) we see $\beta_r=0$ up to degree 2i(h+2)-1, unless r=r(j) for $j=0,\ldots,t-1$. This completes the proof.

We have identified $H^*(Y_{n,n-m}; \mathbb{Q})$ with $E_{r(0)}$ as algebras, for every prime p. Then we have completed the proof of Theorem A.

REFERENCES

- 1. P. Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3. (1965), 305-336.
- 2. A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes des groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
 - 3. S. Gitler and D. Handel, The projective Stiefel manifolds. I, Topology 7 (1968), 39-46.

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS UNIVERSIDAD DE BUENOS AIRES, BUENOS AIRES, ARGENTINA